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One of the basic questions that still surround the
Woodward–Hoffmann (W-H) rules is just how these rules
are connected to the more conventional theories of chemical
reactions1 and reactivity. Because this conceptual gap has not
been closed, these “rules” are treated as if they are some fortu-
itous application of group theory or the orbital correlations are
misrepresented because the information actually provided by
such correlations is misunderstood. Thus one is left with a set
of graphically derived rules that seem to have only a remote con-
nection to more quantitative discussions of chemical reactivity.

Why Is Symmetry a Superior Diagnostic Tool for
Reaction Pathways?

Usually these more quantitative discussions (1–5) of
possible reaction pathways focus on properties like the
conservation of total electronic angular momentum between
reactant (R) and product (P) states2 (6 ). Such discussions have
implied that evaluation of electronic angular momentum (1)
is a more rigorous approach to the characterization of an
electronic state than a graphical representation of state
symmetry. However, this misrepresents the relationship between
the symmetry properties of a state and a directly observable
property such as electronic angular momentum. Total electronic
angular momentum as well as state symmetry depends on
both the electronic configuration of the state and molecular
geometry. Unlike symmetry properties, the value measured for
electronic angular momentum will be physically meaningful
(quantized) only for electronic configurations within special
molecular geometries (7 ).3 This restricts the application of
electronic angular momentum conservation as a tool for sort-
ing out possible reaction pathways (2). However, when it is
possible to evaluate conservation of both electronic angular mo-
mentum and the corresponding symmetry properties for a state,
one can establish an important relation between these two
properties (Fig. 1). If total electronic angular momentum is
conserved during reaction, then it necessarily follows that the
symmetry of that given electronic state will also be conserved.
One will never see a situation where, say, a state has Λ = 0 and
P-type symmetry. Only if the state has Λ = 1 will it have
P-type symmetry. Thus both properties will be conserved
simultaneously or not at all. It follows that not discussing
electronic angular momentum does not degrade, limit, or
impinge the application of the conservation of symmetry for
electronic states as a diagnostic tool for evaluating possible reac-
tion pathways.

As a corollary to previous observations on conservation,
it is also true that if a reaction pathway changes or disrupts
the occupied orbital nodal geometries of a reactant state during
reaction, then this disruption may result in a failure to conserve
state symmetry. Within this covering point group G for a
reaction pathway, the reactant state is usually a reducible rep-
resentation: ΓR(G) = ΠΓi(G); likewise, for products, ΓP(G)
= ΠΓf(G) where Γi(G) and Γf(G) are irreducible representa-

tions within G. State symmetry is conserved for this reac-
tion when ΠΓi(G) = ΠΓf(G). As it will be shown later, state
symmetry can be conserved even if symmetry is not conserved
by two or more of a state’s irreducible “orbital” components
(2).

Figure 2. Reaction pathway geometry for a W-H “allowed” reaction.
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Figure 1. Suppose reactant R is in an initial state i and it undergoes
a single-step reaction within a certain geometry or covering point
group G to yeld two products (P1 and P2) in some final states f.
Each of the R and P states possesses both symmetry properties (Γ)
and a certain value of angular momentum (Λ). Angular momentum
is conserved if ΛR = ΛP1 + ΛP2. State symmetry is conserved for this
reacion if ΓR(G) = ΓP(G). Furthermore, the representation of the
overall product state P can be factored: ΓP(G) = ΓP1(G) # ΓP2(G).
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What Information Is Provided by a Correlation
Diagram?

The approach described by W-H is based on a graphical
representation of occupied reactant and product molecular
orbital nodal geometries (i.e., the in-phase out-of-phase re-
lationships within each MO), which are then characterized
in terms of their respective symmetry properties. These nodal
geometries of the occupied orbitals can be conserved between
reactants R and products P only when a reaction pathway
possesses a geometry sufficient to force an isostructural rela-
tionship among the critical bonds (i.e., bonds undergoing
connectivity changes during the conversion of R to P). Along a
W-H “allowed” reaction pathway, the transforming bonds of the
reactants and products become indistinguishable (i.e., resonance)
structures of each other, analogous to Wheland structures that
are used for the valence bond representation of benzene. Thus
a correlation diagram is used to establish, graphically, whether
the reactants and products can become structurally identical
within a particular reaction path geometry. As an example,
consider the W-H allowed π2s + π2a reaction pathway4 for two
ethylene molecules to yield cyclobutane (Fig. 2). Within this
proposed π2s + π2a allowed reaction pathway geometry there
are no distinct reactants or product entities, only a super
molecule representing a reaction pathway whose structural form
consists of reactants and products as its principle structural
extremes. This type of isostructural relationship between
reactants and products cannot exist for a π2s + π2s reaction
pathway because for a “forbidden” geometry, not all the
occupied reactant nodal geometries correlate to all the oc-
cupied product nodal geometries.

What Is the Relationship between Orbital Symmetry
and Energy?

Conservation of total electronic angular momentum, in
addition to conserving orbital symmetry for simple elemen-
tary reactions (atom–atom, diatomic molecules with atoms
or other diatomic molecules), also affects the total electronic
energy of a reacting system. Reformulation of this transfor-
mation in terms of total electronic energy provides a more
finely calibrated evaluation of symmetry effects on the inter-
action of the reactant and product potential energy curves
or surfaces (8). Instead of focusing on angular momentum
or symmetry labels for states and orbitals, attention is shifted

to the consequences that these symmetry properties have on
the interaction energy5 (9) between the reactant and product
potential energy surfaces (2, 4, 8, 10).

Following the notation used by Flurry (8), a reacting
system wave function, Ψr, is designated as a linear combina-
tion of the total (i.e., state) wave functions of the reactants
Ψ°R and products Ψ°P:

Ψr = CRΨ°R + CPΨ°P
The coefficients CR and CP are adjusted as a function of dis-
tance traveled along a proposed reaction pathway (Fig. 3). For
isolated systems (i.e., undistorted reactants or products), Ψr
converges to Ψ°R for the reactants and Ψ°P for the products
and E converges to E °R and E °P for the isolated reactants and
products, respectively. The Hamiltonian operator is totally
symmetric (i.e., invariant with respect to any symmetry opera-
tion). As for the wave functions, it is assumed that both Ψ°R
and Ψ°P are adequately described within the limits imposed
by the Born–Oppenheimer approximation.

If one moves along either of the potential energy curves
toward a proposed intersection of R and P, then ER and EP
will increase (i.e., become less stabilizing) as the reactants and
products are distorted toward the intersection of these two
PE curves. If the matrix elements or integrals HRP and SRP
are zero, then R and P do not interact (10, 11) and as a re-
sult there is a crossing but no pathway by which reactants
can be adiabatically interconverted with products (12).6 If
this conversion of reactants to products is to be allowed then
it must be determined where on the potential energy sur-
faces of the reactants and products the integrals HRP and SRP
are nonvanishing (9, 10):5

* Hamiltonian operator for reaction.
Er Total electronic energy for reactants and products at some

distance r along the reaction pathway.
Ψr = CRΨ°R + CPΨ°P Wave function describing the reaction

potential energy surface in terms of
isolated reactant, Ψ°R, and product,
Ψ°P, state wave functions.

Schrödinger equation: k Ψr|* – Er|Ψr l = 0

Secular determinant:
  HRR – Er HRP – ErSRP

HRP – ErSRP HPP – Er

= 0

HRP = kΨ°R|*|Ψ°Pl = HPR ;   SRP = kΨ°R|Ψ°Pl = SPR

Use group theory to decide whether HRP and SRP = 0.

An analysis of HRP and SRP integrals can be accomplished
(8, 10) using the geometry at the intersection to determine a
point group G and then representations of Ψ°R and Ψ°P within
this point group. If HRP and SRP are not forced to be zero by
symmetry, then these reducible representations of HRP and
SRP must contain the totally symmetric representation Γ1(G ).
A reducible representation of the integral HRP is determined
by taking the direct product of its three component repre-
sentations:

HRP = kΨ°R|*|Ψ°Pl = HPR ;   SRP = kΨ°R|Ψ°Pl
ΓHRP = ΓR # Γ* # ΓP

** Γ* = Γ1(G)    (this is the totally symmetric representation
                   of group G)
ΓHRP = ΓR # Γ1(G) # ΓP
ΓHRP = ΓR # ΓP # Γ1(G)

** ΓHRP = ΓR # ΓP;   this result also means that ΓHRP = ΓSRP
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Figure 3. Plot of energy of products and reactants as a function of
distance traveled along a proposed reaction pathway.
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The representation of the Hamiltonian operator is Γ1(G ),
a result of the requirement that the Hamiltonian operator
describing this reaction pathway be totally symmetric with
respect to all symmetry operations. This symmetry invari-
ance of the Hamiltonian requires that the reducible repre-
sentation of the direct product Γ(Ψ°R) # Γ(Ψ°P) contain at
least one component of the totally symmetric representation
Γ1(G ) if both these integrals (HRP and SRP ) are to have an
opportunity to be nonzero:

** ΓR # ΓP = Σ Γi (G)
               

Rep

If the direct product of ΓR # ΓP contains the totally sym-
metric representation of the group G, Γ1(G) then HRP

and SRP need not be equal to zero.

Two results are possible for the reducible representations
of HRP and SRP when these R and P states intersect (4). For
case 1 (i.e., state forbidden), the reducible representations ΓRP
for HRP and SRP do not contain the totally symmetric repre-
sentation Γ1(G ). This means that HRP and SRP must vanish
(must be equal to zero) and there is no net interaction between
R and P states. As a result, these R and P potential energy
curves or surfaces merely cross each other because there is
no adiabatic pathway for the interconversion of R and P (12).6

 Case 1: State forbidden
 ΓR # ΓP = Σ Γi (G) À Γ1(G)

Rep

 ⇒ HRP and SRP = 0

In case 2 (state allowed), the reducible representation for
ΓRP contains a totally symmetric representation Γ1(G ). Since
HRP and SRP are not required to vanish, there can be a net
interaction between the reactant and product potential energy
surfaces. As a result, there now is an adiabatic pathway within
this geometry that permits interconversion of R and P. Such a
state allowed interaction between R and P states will always
occur when both reactants and products are closed-shell
molecules (all molecular orbitals are doubly occupied). The
resulting ΓRP representations between closed shell electronic states
always contain a totally symmetric representation, since the
ground states (ΨR and ΨP) are themselves totally symmetric:

 Case 2: State allowed
  ΓR # ΓP = Σ Γi (G ) . Γ1(G )

Rep

 * ⇒ HRP and SRP ≠ 0, need not be zero

However, within this general requirement for state
allowed interactions is a subset of interactions for
which ΓR # ΓP = Γ1(G)

However, within case 2 there is a subset of allowed interac-
tions that generates two situations of particular interest. In
case 2a, there is only a partial correlation among the occupied
reactant (ϕR) and occupied product (ϕP) molecular orbitals:

** ⇒ If it happens that ΓR # ΓP = Γ1(G )  then  ΓR = ΓP
and because the symmetry of a state is a product of the
irreducible representations of its occupied MO,

    ΓϕR iΠ
i

= ΓϕP jΠ
j

but, case 2a:
ΓϕR ≠ ΓϕP ; ϕR and ϕP  in Ψ°R and Ψ°P, respectively

W-H forbidden

As an example of a case 2a reaction, consider the state
correlation diagram for the C2v or π2s + π2s dimerization of
ethylene to form cyclobutane. This reaction is one for which
the reaction pathway is state allowed but W-H forbidden. In
this geometry, the ground state of the ethylene reactants pos-
sesses a1 symmetry (i.e., total symmetry within the C2v group)
and correlates with the ground state of cyclobutane, which
also possesses a1 symmetry and so is a state allowed process:

State Correlation Diagram for π2s + π2s

Reactants     Products

        MO symmetry  Symmetry of states MO symmetry
        composition of w.r.t. group C2v composition of
              states      states
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This C2v or π2s + π2s dimerization of ethylene is W-H
forbidden because the occupied reactant orbital (π1 – π2) cor-
relates with a vacant product orbital (σ1* + σ2*) rather than
with the other occupied (σ1 – σ2) product orbital:

W-H Orbital Correlation Diagram for π2s + π2s

        Reactant MOs     Group C2v     Product MOs
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Since the ground states of these reactants and products
both transform as a1, it follows that

ΓR = a1 # a1 #  b1 # b1 = a1 and ΓP = a1 # a1 #  b2 # b2 = a1

and ΓR # ΓP = Γ1(G) = a1

but not all the orbitals correlate:
a1 = a1    but    b1 ≠ b2

which means that
ΓϕR ≠ ΓϕP ; φR and φP in Ψ°R and Ψ°P, respectively

Although this reaction geometry is allowed by the state-to-
state correlation, this same reaction geometry is orbitally for-
bidden according to the W-H correlation diagram.7 This lack
of complete correlation at the orbital level results in less than
the maximum possible amount of interaction (4 ) or “reso-
nance” between reactants and products.

The next scenario of interest is case 2b, in which corre-
lation occurs simultaneously between R and P states with
complete orbital correlations between R and P:

** ⇒ Once again, ΓR # ΓP = Γ1(G);  then ΓR = ΓP and

    ΓϕR iΠ
i

= ΓϕP jΠ
j

, but now
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Case 2b:
ΓϕR = ΓϕP ; ϕR and ϕP in Ψ°R and Ψ°P, respectively

W-H allowed

Here too, the reducible representation of ΓRP for the R and P
states also contains a totally symmetric representation (i.e., a)
but now these correlations between reactant and product ground
states occur along with complete correlations among the
occupied reactant and product orbitals undergoing reaction. For
example, consider the π2s + π2a dimerization of ethylene to
give cyclobutane:

State Correlation Diagram for π2s + π2a

 Reactants  Products

         MO symmetry     Symmetry of states    MO symmetry
         composition of        w.r.t. group C2v     composition of
               states    states
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b2ab

b a

b
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W-H Orbital Correlation Diagram for π2s + π2a

   Reactant MOs Group C2 Product MOs
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This time not only does the ground state of these reactants
correlate with the ground state of the products, but within this
C2 reaction geometry, symmetries of the occupied molecular
orbitals of the reactant and products also correlate with each
other. The significance of this combined state and orbital
correlation is that these R and P structures are one and the same
structure within this particular reaction geometry. In terms of
energy, case 2b provides the maximum possible stabilizing
interaction (4, 8) between the reactant and product potential
energy surfaces:

ΓR = a # a # b # b = a and ΓP = a # a # b # b = a
and ΓR #  ΓP = Γ1(G) = a

but this time the occupied orbitals correlate: for each occupied
a-orbital in R there is a corresponding occupied a-orbital in P,
and for each occupied b-orbital in R there is a corresponding
occupied b-orbital in P; and

ΓϕR = ΓϕP ; φR and φP in Ψ°R and Ψ°P, respectively

The advantage of recasting this problem in terms of
symmetry effects on electronic energy is that such an approach
offers a global view of orbital correlation effects on total elec-
tronic energy. It is now obvious that there is a continuum of
orbital correlations within state allowed reaction pathways.
At one extreme is a state allowed reaction that has no orbital
correlations between R and P states and at the other extreme

are those reactions with complete orbital correlations among
R and P states (i.e., W-H allowed).

According to Silver (4), state allowed reactions (case 2)
obey the Wigner–Witmer rules, which require conservation
of the total electronic orbital angular momentum (Λ) and/or
symmetry (Γ) between reactant and product states. This require-
ment for state symmetry correlation is global and represents
the minimum amount of interaction (4, 8) necessary for an
adiabatic interconversion of reactants and products. Case 2b
describes reactions that obey the W-H rules and in addition
to conserving total electronic symmetry between states (case 2)
also conserve individual electronic orbital symmetry between the
R and P occupied molecular orbitals. Conservation of both
orbital and state symmetry between R and P provides the
maximum amount of stabilizing interaction between R and
P because critical reactant and product orbitals are not only
“in phase” but also become identical along the pathway for
reaction.

Discussion

Conservation of orbital symmetry does not mean that
there is no activation energy for a W-H allowed reaction, nor
is it proper to infer that the W-H allowed process has the
lowest activation energy of all possible pathways connecting
R to P. Indeed, the major contributors to an activation energy
such as the distortion of bond lengths and bond angles from
their equilibrium values cannot be evaluated by the W-H
correlation diagrams. Disregarding the distortion energy of
nonreacting bonds can be justified in part because such bonds
do not undergo any connectivity changes (breakage and re-
formation). Thus the nodal geometry (i.e., the in-phase–out-
of-phase relationships within each MO) of nonreacting bonds
remains unchanged.

Another assumption in the application of these symmetry
rules is that if a given reaction geometry is “allowed” then a
thermal pathway should exist for this interconversion of R
and P. Although this assumption is reasonable, there is no
requirement that such a pathway exist.

A W-H allowed reaction pathway conserves R (reactant)
and P (product) nodal geometries, which in turn guarantees
continuous covalent bonding along an adiabatic reaction
pathway (12)6 that takes the reactants through a transition
state and on into products. A W-H forbidden pathway can
either maintain this continuous bonding (interaction energy
between R and P) along an adiabatic pathway and generate
products in excited electronic states, or disrupt reactant nodal
geometry or bonding to reach diabatically (or nonadiabatically)
a lower-energy pathway to products (12).6 Based on the
idea that continuous bonding is energetically more favorable
than either nonbonding or antibonding interactions, a W-H
forbidden reaction is not impossible; rather it is just less
probable than an W-H allowed reaction pathway. One should
consider these W-H rules as a kinetic equivalent to the more
familiar spectroscopic selection rules. It is also worth empha-
sizing that it is not necessary that intermediates intervene
for a W-H forbidden reaction pathway to be realized. In
other words, it is also possible for a W-H forbidden pathway to
occur as a single-step reaction (13) (case 2a) and one cannot
argue, a priori, that the difference between a W-H allowed and
a W-H forbidden pathway is that the latter must pass through
an intermediate on the way to products. As a result of the
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description provided here, these W-H allowed reactions are
best conceptualized as special types of molecular distortions that
are more physically analogous, for example, to the inversion
of ammonia than to a dissociative–recombination reaction like
that between methoxide and tert-butylchloride (e.g. an SN1
substitution).

Since reaction and product bonds in an allowed reaction
are distorted but not broken to form a transition state, it was
stated that an allowed reaction permits an uninterrupted
bonding between reactants, which extends through a transition
state and on into the products. Although true, this idea often
leads to erroneous physical interpretations of W-H correlation
diagrams. For example, it is incorrect to
interpret orbital correlations as a physical
mapping or connection of specific reactant
orbitals to particular product orbitals. Such a
positional correlation is not necessary, nor
is it required by group theory.8 Consider, for
example, the correlation diagram for the al-
lowed π4s + π2s reaction of butadiene with
ethylene (Fig. 4). In the correlation diagram
for this Diels–Alder reaction, the π ethylene
is correlated to the π double bond of
cyclohexene. It is not required nor does it
make any physical sense to argue that the
ethylene π orbitals have moved from ethyl-
ene (14) onto the butadiene fragment to be-
come a cyclohexene double bond. Although
examples of such positional correlations
may exist for other molecular orbitals in this
reaction or even in other reaction diagrams,
these types of “natural” correlations (15) are
extraneous. From a group theoretical perspec-
tive a correlation diagram indicates whether
the reactant and product structures, as de-
fined by their respective nodal geometries,
can become electronically identical within a

proposed reaction geometry, but not whether this reactant or-
bital becomes that product orbital.

If one desires to map a specific ebb and flow of reactant
orbital interactions as they interact to form product orbitals, then
an orbital interaction diagram9 should be constructed using
some other quantum mechanical technique. However, one
should not expect the results (orbital coefficients and energies)
from such a resolution to be invariant with respect to the choice
of basis set. On the contrary, one should expect that such
orbital interaction diagrams might possess some dependence
upon the type of basis set utilized for the computation, as well
as upon the computational technique used for calculation.

Far from being an interesting diversion, the W-H rules
have a solid fundamental basis within the theory of chemical
reactions. These W-H diagrams of occupied R and P nodal
geometries and their symmetry properties are a part of the
same theory of electronic structure that make applications
like Hund–Mulliken diagrams (16 ) possible. The very fact
that the W-H selection rules can be derived from a variety of
theoretical perspectives (1, 17 ) is an indication of just how
fundamental molecular orbital nodal geometries are to cova-
lent bonding and the application of bonding principles to
chemical reactions and reactivity.
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Notes

1. Typically a chemical reaction is defined as a transformation of
reactant molecules into one or more new substances. Such a transfor-
mation will necessarily involve changes in bonding of the reactant
molecules as well as possible changes in the number and type of
molecules produced as R evolves into P. However, for this article, these
bonding transformations must result from an intersection of at least
two PE surfaces (one for R and another for P) as a function of atom

Figure 4. W-H orbital correlation diagram for π4s + π2s reaction.
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cates the adiabatic pathway, and the arrow with the broken line indicates the diabatic
pathway.

Ai

Af

Bi

Bf

P

En
er

gy

Ai

Bf

Af

Bi

P

En
er

gy

http://jchemed.chem.wisc.edu/
http://jchemed.chem.wisc.edu/Journal/Issues/1999/Jul
http://jchemed.chem.wisc.edu/Journal/


Research: Science and Education

JChemEd.chem.wisc.edu  •  Vol. 76  No. 7  July 1999  •  Journal of Chemical Education 1007

reorganization. Since a photoexcitation results in a change of state for
a molecule and thus a change in bonding, one might be tempted to
view this process as a type of reaction. A phototransition is a transition
between molecular states (vertical); subsequent atom rearrangement
to a minimum energy conformation occurs after the transition and
before any “reaction”. In a chemical reaction, the transition between
R and P states is adiabatic (12)6 and bonding changes occur simulta-
neously with atom reorganization.

2. It is assumed in this presentation1 as well as in the presentations
in refs 2–5 that each of the angular momentum components (nuclear
and electronic [i.e., orbital and electron spin]) of the reacting system
is separately conserved. Although spin multiplicity is not considered
in this discussion, it remains a meaningful property for all symmetry
groups (6 ).

3. The projection of this total electronic momentum vector onto
an axis of rotation symmetry is a good quantum number for point
groups containing at least one doubly degenerate representation (i.e.,
C3–Cn; D3–Dn; C3v–Cnv; C3h–Cnh; D3h–Dnh; D2d–Dnd; S2n,n≥2; T; Th; Td;
O; Oh). For diatomic molecules (with geometries of C∞v or D∞h) pro-
jection of this total electronic orbital angular momentum onto the in-
ternuclear axis is given the designation Λ. This projection of total elec-
tronic orbital angular momentum for the molecular state Λ analogous
to the many-electron atomic vector MZ:

Λ = |Σj λ(j)|;   MZ (  j ) = Σi ml i(  j )
where ml i(  j ) is the azimuthal quantum number for the ith valence
electron of atom j.

4. π2s + π2a: This notation tells the reader that this pericyclic
reaction involves π bonding orbitals. These two sets of π bonds are
orientated in such a way that the (s) π bond reacts in a suprafacial (same
side, cis or syn fashion) with another π bond. The second ethylene (a)
π bond reacts in an antarafacial (opposite side, trans or anti fashion)
with the first π bond. The number 2 tells the reader the number of
atoms involved in the fragment of the pericyclic reaction: 2 + 2 = 4
total atoms involved in this cyclization reaction. Theoretically, one
should use the point group for a reaction geometry and its irreducible
representations for the various R and P molecular orbitals in order to
obtain the maximum symmetry information possible about the nodal
geometries of these wave functions and electronic states within that
particular geometry.

5. Interaction energy refers to intermolecular interaction energy,
which contains both stabilizing and destabilizing components. Based on
Fukui’s version of frontier molecular orbital theory (9), the interaction
energy can be partitioned into some of its more familiar components:
Eint ≈ Eelectrostatic + Epolarization + Echarge transfer + ∆E(2e-)covalent + ∆E(4e-)closed shell

6. Adiabatic and diabatic (or nonadiabatic): To avoid confusion,
one should distinguish two types of potential energy curve crossings
and then define adiabatic and diabatic with respect to these curve cross-
ings (Fig. 5). For both cases, if perturbation of a molecular system
changes the state in a continuous fashion along some classical pathway
(i.e., electron density adjusting to position of nuclei), then the elec-
tronic state will also change in a continuous fashion and the transition
from i to f will be associated with a single potential energy surface (12a).

Ehrenfest’s adiabatic law states that for a virtual, infinitely slow
alteration of coupling conditions, the quantum numbers of the system
do not change (12b). The confusion arises when an initial state is ex-
panded in terms of its zeroth or unperturbed wave functions. For ex-
ample, let the unperturbed state A be characterized by Ψ°(U) and for
state B by Ψ°(L). Once a perturbation (P) is applied and A and B are
of the same symmetry (case 2) then let:

A(P) = a Ψ°(U) – bΨ°(L) and B(P) = a Ψ°(U) + bΨ°(L); with
the normalization condition that a2 + b2 = 1

At the start of the perturbation, if at Ai, a ≈ 1, b ≈ 0 and at Bi, a
≈ 0, b ≈ 1, then at the end of the perturbation, at Af, a ≈ 0, b ≈ 1 and
at Bf, a ≈ 1, b ≈ 0. The transition of state Ai to Af is still adiabatic even
though the wave function describing this state evolved from Ψ°(U) at
Ai to Ψ°(L) at Af.

7. An adiabatic correlation among the orbitals is still possible in
this example because the doubly excited reactant state of (a1

2 b2
2) sym-

metry can mix into the ground reactant state to force the necessary
orbital correlations between R and P. However, mixing in an excited

state will provide much less stabilizing interaction energy than a direct
orbital correlation among the occupied orbitals.

8. Strictly speaking, such a group theoretical argument is not de-
pendent upon a particular type of basis set; any proper basis set that
spans the group in question will lead to the same conclusion.

9. One needs to be aware that cavalier interpretation of an inter-
action diagram can lead to conclusions that are basis-set dependent.
For example, one can talk about bonding and antibonding interactions
among a set of molecular orbitals, but a line is crossed when one resolves
these interactions into percentage contributions from the various
molecular orbitals. At this point, one has moved into territory that
might be basis-set dependent.
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